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Fragments of Infinity, A Kaleidoscope of Math and Art. By Ivars Peterson. John Wiley & Sons,
Inc., New York, 2001, vii + 232 pp., ISBN 0-471-16558-1, $29.95.

Reviewed by William Mueller

On a cold, rainy night in the early spring of 1952, Jackson Pollock stood in his candlelit
barn, staring at a huge canvas spread out on the floor before him. His arms hung at his
sides: a dripping paint stick in one hand, a glass of bourbon in the other. He was
stuck. Although he had swirled the paint on the canvas into what was, by then, a
familiar primordial pool—oily, organically colored, chemically redolent—he could not
bring it to life. It was a problem, and no amount of half-light, drinking, or Coleman
Hawkins, blaring from a spattered phonograph on the floor, offered any inspiration.
As night turned to morning, Pollock sullenly confronted his capacity to see it through.
He finally grew desperate, and summoned a friend and fellow painter. The peer review
was merciless: “It looks like vomit” [6, p. 6].

Only a few years before, the solutions had come so effortlessly. Pollock had dis-
covered a language of gesture and movement that had connected him immediately to
his work, and he had produced, in quick succession, a forceful series of revelations
that had astonished the New York art world. He’d managed to find, amid gallons of
tangled house paint, a passage out of himself and across human boundaries. The paint-
ings were received as confounding, confrontational, even shocking, but they earned
Pollock a long-sought reputation, and they would change modern art. The affirma-
tion, however, was ultimately unfulfilling. For Pollock, nothing could compare to the
rapturous power of being inside a painting that was “working.”

Figure 1. Number 14, 1948, by Jackson Pollock [8, p. 239].
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Then, unaccountably, inspiration seemed to disappear. As Pollock struggled to re-
gain the self-confidence of those transcendent seminal encounters, his vision became
murky. The lost lucidity in his work slowly translated into an acute psychological dis-
tress. He scraped and reworked the canvas that had so vexed him on that rainy night,
returning to it for over half a year. Eventually, he had had enough: he picked up a
2 × 4, slopped blue paint along an edge, and plunged it repeatedly into the wet canvas,
varying the angles in some faint residual hope of artistic gesture. It had to have felt
like a desperate act, to impose something as laughable as linearity on such a tormented
landscape. Nevertheless, “Blue Poles” came to be recognized as an epic exposition
of human limitations—a marvelous disaster. It would sell, after Pollock’s death, for a
record price of two million dollars at auction.

Mathematicians may relate to certain aspects of the story. It isn’t difficult, after all,
to draw parallels between the working artist and the working mathematician. Both en-
deavor to express connections among abstract manifestations of the most elusive of
universal concepts. Both are dependent upon specialized formal languages, incompre-
hensible to the great mass of the uninitiated, the insufficiently devoted, or the simply
unable. Both struggle with the finite forms and structures with which we are all des-
tined to formulate our limited visions of the infinite and the ineffable. Both, finally,
must defer to creative mechanisms beyond their complete control: intuition, aesthetic
judgments, and the subjective regard of their peers.

Figure 2. Figure 3.13, 1983, from Degrees of Unsolvability, by Manuel Lerman [3, p. 291].

It is, of course, also very easy to oversimplify these connections, leaving only a
filamentary network of clichés. Not all artists are troubled alcoholics like Pollock,
struggling to release something trapped within. Similarly, not all mathematicians are
brilliant schizophrenics like John Nash, recognized for their idiosyncrasies as much
as for their work. A persistent cultural fascination with the ultimately facile category
of “genius,” combined with a sentimentality that reflexively equates intellectuals with
loveless loners, only perpetuates these popular myths. Recent Hollywood treatments
of both Pollock and Nash [1], [2], for example, showcase troubled individuals engaged
in solitary acts of revolutionary creation. The craft, dedication, society, and often quite
impersonal inspirations that form the day-to-day life of most working artists and math-
ematicians are not the stuff of media stardom.

Ivars Peterson, a writer of popular columns on mathematics for both the MAA and
Science News, has written a book that, by way of contrast with the Hollywood block-
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busters, plainly presents a selection of contemporary work-a-day artists and mathe-
maticians who look to each other for inspiration. Each of the ten chapters in Fragments
of Infinity is organized around a shared mathematical theme, explored by a particu-
lar subculture at the math/art intersection. The themes are well-trodden in the popular
mathematical literature—fractals, tilings, minimal surfaces, etc.—but Peterson distinc-
tively finds artists who use these mathematical ideas as organizing elements and math-
ematicians who are inspired by their conceptions. In many cases, the math/art divide is
convincingly rendered superfluous, both for the individuals portrayed and for the work
that they produce. It is an engaging premise. Peterson is a winning writer, and he tells
these stories of collaboration and cross-fertilization with an easy-to-read simplicity.

The book, however, contains very little in the way of actual mathematics. Mathe-
matical notation is avoided completely, and there is no sign of computer code, despite
many examples of artists working with computer-assisted designs. The author seems
to assume that readers will come to the book with only the most rudimentary techni-
cal knowledge. Elementary terms such as “coordinate” and “plane” are patiently de-
scribed, and the reader is taken deliberately through constructions like the “unusual”
Möbius strip. Higher-level mathematical ideas, when they are approached, are handled
poetically, in a style that is clearly directed at a “general” audience. There is nothing
wrong with writing at this level, of course. One wonders, however, who this “gen-
eral” audience might be, and why they would be reading this book. Mathematicians,
certainly, will look through these pages and wonder if their subject is being faithfully
represented.

Artists will undoubtedly have similar reservations. The book has been published
with high production values, and it includes many fine photographs of artists’ work.
There is scant mention, however, of artistic materials and processes. There is nothing
in the text that can really be called art criticism, either. In a typical chapter, standard
artistic terms such as “conceptual” are explained, followed by anecdotes of artists who
neatly fit the bill. Rather than providing satisfying analyses of artists’ interactions with
their work, or with other artists, the text offers only a collection of short, tidy images.
The sculptor Helaman Ferguson, for example, is described this way: “amid the roar and
the dust, artist and stone engage in intimate conversation—one that can readily break
into song” (p. 12). The implied connection between the vibrations of the stone and
the geometry of the emerging form has a mathematical resonance that seems far too
convenient. Peterson often works in metaphors like this, at times saying more about his
own search for expression than he does about the artist or their work. The liberties can
become aggravating, as when Pollock’s paintings are flatly misrepresented as “fractal
splashes” (p. 2).

Peterson begins his book by saying that it is “about creativity and imagination at
the intersection of mathematics and art” (p. v). He says that he will “highlight the pro-
cesses of creativity, invention, and discovery intrinsic to mathematical research and to
artistic endeavor” (p. vi). It is an ambitious declaration, and it sets expectations high.
Indeed, throughout the book there is the recurrent suggestion that a grand connection
between the two subjects will be revealed. The surface similarities between mathe-
maticians and artists, already noted, cannot serve. What Fragments of Infinity seems
to promise, tantalizingly if never quite explicitly, is some exposition of the nature of
these similarities. The promise is never truly delivered.

Part of the difficulty is that the author has limited himself—unnecessarily—to rep-
resentative examples of a predetermined theme. Sources come entirely from the visual
arts, are disproportionately sculptural, and lean heavily on the immediate appeal of
geometric forms. In an opening tour of the National Gallery in Washington, D.C.,
for example, the author stops at the entryway to admire the elegant curves of Henry
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Moore’s Knife Edge Mirror Two Piece, claiming for Moore a “fascination with holes
and topological transformations of space” (p. 2). The author assiduously avoids walk-
ing around the building to confront Frank Stella’s Prinz Friedrich von Homburg, Ein
Schauspiel, 3X, the mathematical lessons of which would be far more difficult to en-
capsulate. (It is possible that the author’s visit predated installation of Stella’s work,
but one might pick from any number of similarly perplexing pieces in and around the
gallery.) Given such limited observations, it seems doubtful, right from the start, that
the author will be able to generalize his conclusions convincingly to all of art and
mathematics, however suggestively they may be presented.

Peterson has put himself face-to-face with the fundamental impediment to popular
writing: To write an account of a difficult subject, it becomes necessary to accommo-
date the lay reader by leaving out most of the difficult things. When these difficulties
are an essential, even a defining, characteristic of the subject, a thorny representational
dilemma presents itself. The problem, of course, is only compounded when two dif-
ficult subjects are treated simultaneously. Art and mathematics both challenge us to
express difficult things—concretely, exactly, and in a language that is appropriate to
the task. Peterson has made a commendable effort to hurdle over this impediment with
stories, metaphors, and poetics, but the missing complexities—the mortar that holds
these subjects together—finally make Fragments of Infinity impossible to assemble.

There is another difficulty inherent in Peterson’s approach, a deeper one. It arises
from the casual application of an unexamined system of equations relating the struc-
tures and forms of mathematics with those of the artist. In simplest form, the presence
of structure in an artwork, in itself, is equated with mathematical intent. Peterson ably
demonstrates that mathematical structures can lead artists to a certain kind of compo-
sitional discipline. Strict mathematical discipline, however, is antithetical to many of
the most fundamental tenets that have informed modern art. The Soviet painter and de-
signer El Lissitzky was very explicit about this: “The parallels between Art and mathe-
matics must be drawn very carefully, for every time they overlap, it is fatal for Art” [4,
p. 348]. Later, in another context (but just as typically), the American painter Robert
Motherwell wrote that “. . . modern painting . . . is symbolic and poetic, not discursive
and descriptive . . . the latter is always trying to infiltrate modern painting, usually un-
der the tag of some ‘humanism’ or another. What shit!” [5, p. 155].

There is a long history of popular accounts that link contemporary art to contem-
porary ideas in math and science. From parlor primers to magazine articles to coffee
table books, they have usually been written in the service of some sort of democratic
“popularization,” and the associations that they make have almost always been ex-
aggerated. Lissitzky, for example, has been persistently aligned with explorations in
multidimensional geometry made by his mathematical contemporaries. Lissitzky’s so-
cialist perspective, and his deep involvement with the history of graphic design—both
probably more influential in his art—only confuse easy-to-digest stories of his mathe-
matical vision. An example in recent years is the spate of books, posters, and T-shirts
extolling the wonders of “fractal art,” which marketably replace the subtleties of art
history with the inexpressive complexities of form.

The truth is that when artists order their work, their notions of harmony, unity,
and precision often come from sources that are anything but mathematical. Take, for
example, an artist that Peterson features in Fragments of Infinity. Arlene Stamp was a
high school mathematics teacher before turning to art full-time. She won a commission
to create a mosaic for Toronto’s Downsview subway station by suggesting a nonrepeat-
ing pattern “based” on the digits of π . The conception of the design proceeded along
the following lines. First, an initial state of the mosaic was imagined, consisting of a
sequence of rectangular units, side by side, each ten tiles wide. In the next stage, Stamp
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imagined each rectangular unit shifted over the previous unit by a number of tiles rig-
orously determined by the sequence of digits in π’s decimal expansion. Finally, the
amount of overlap occurring along any column in the design was to be translated into
a particular color of tile. This would all seem very algorithmic, if Stamp had followed
the instruction set—but she didn’t. During the construction, she found it necessary to
incorporate a variety of inexact human gestures to express her ideas. Peterson tells
us that “some regions of overlap may end up as many as three or four layers thick”
(p. 92). Stamp, however, “used four sets of eight colors for the project, deploying them
in different ways on surfaces in various parts of the station” (p. 92). When the final
mosaic is considered, we must give Stamp her due credit as an artist. Only then can
we appreciate the many choices that she has made—to arrange the tiles, to shift the
tiles, to count the overlaps, to choose the colors in various places—that have no basis
in mathematics. The mosaic, in the end, is not strictly about π . Stamp herself says: “I
am interested in the beauty of embedded possibility”(p. 94).

Many other artists could serve as examples of the kinds of mistaken impressions
that can arise from a too-easy calculus of form and mathematics. Ellsworth Kelly, a
contemporary painter, would seem to fit nicely among the artists in Peterson’s book.
Kelly’s paintings are simple and geometric, composed of curving fields of primary
color, expressing their exuberance through the exquisite tensions of tangency between
various curves in the paintings and between the curves and the edges of the canvas.
The carefully poised kisses between Kelly’s forms gives the viewer the same kind of
“Oh!” that a mathematician might experience when discovering a uniqueness theorem.
Kelly’s great gift is his ability to see these forms, in all of their everyday manifesta-
tions. He has painted plants, shadows, reflections, bridge arches, and hills, all in the
same hard-edged geometric distillations. The colors with which he floods his geometry
express the sheer joy of seeing. If Kelly is “mathematical,” he has invented the term
for himself. His abstractions from the natural world are something that we respond to
intuitively, in a way that a purely mathematical art could never achieve.

Jasper Johns, another contemporary painter, offers further illustration. Johns has
painted the numbers from one to nine, and has composed many other paintings around
various organizations of these digits. Is Johns interested in number theory? It’s doubt-
ful. What the numbers represent, in Johns’s language, is form itself, made visible
through familiar, everyday exemplars. The forms that Johns chooses are often iconic,
suggesting larger constraints in our everyday life. He is famous, for example, for hav-
ing painted the American flag. Johns’s paintings struggle with these forms, working
with thick layers of paint, in a discourse that is inward and painterly as much as
it is outward and political. To focus on the underlining lines, rectangles, and forms
of Johns’s Flag—to call them “mathematical”—would reduce the painting, quite in-
accurately, to the clean lines and assured colors of a “United We Stand” bumper
sticker.

Perhaps, however, the difficulty of drawing too close a correspondence between
art and mathematics is best illustrated by considering the set difference—the artists
and mathematicians who would not sit comfortably in any grand commonality, how-
ever much they may appreciate the work that is accomplished in the opposing sphere.
Among mathematicians, this might include a large group of applied practitioners,
many formalists (though I certainly know logicians who revel in the visual beauty
of their symbolism), and certain Platonists, inspired by forms that they perceive to be
super-human, beyond the lesser, personal impulses of art.

Among artists, the avant-garde pioneer Robert Wilson comes to mind. Known for
his epic theatrical productions, especially for the stage designs of his many operas,
Wilson has also found expression through drawing, painting, and sculpture. A recent
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installation piece, 14 Stations, combines all of these influences. Wilson says of it [9,
p. 3]:

My work is an environment, an installation that brings together elements of architecture, sculp-
ture, art, music, and language. In a certain sense, it is a mental landscape. Call it an encounter
of different cultural traditions, in which I have tried to invent my own language . . . . I always
work with a horizontal line, which stands for time, and a vertical line, which, for me, always
means space. This is something personal . . . .

The vertical line, in this case, is a boardwalk that takes viewer past a series of fourteen
small cottages, arrayed to either side. The interior of each cottage is examined through
a small window, admitting only a single viewer at a time. What one sees, hears, and
smells, in each case, is a carefully choreographed tableau—completely outside of one’s
waking experience—that immediately strikes at the gut. The cumulative effect, as one
wanders the entire installation, is undeniably affecting, though it is difficult to make
much “sense” of the reaction. Wilson’s relation to the formal order of the piece, much
of it appropriated from religious tradition, is ambiguous and unsettling. Taking Johns
one step further, Wilson uses the formalism to question, and perhaps even repudiate,
its very idea. Robert Wilson is not a mathematician.

Artists are constantly struggling with the limits imposed by their media. Painters
like Pollock, Kelly, and Johns alternately fight, then celebrate, the restrictions of their
flat, framed arena. Musicians—like Coleman Hawkins—struggle within traditions of
composition and performance that, at the same time, carry with them the rich formal
history of their music. Writers, from Pushkin to Pynchon, reinvent literature, but do so
on a stage that has been set by generations. Mathematicians, also, must work within
their subject’s history and limitations. Every mathematician has experienced a surpris-
ing counterexample, seen a conjecture disproved, and had to reconsider the outlines of
the dimly lit subchamber of mathematics they call their own. Turing and Gödel, and
the complexity theorists who have followed, have made fundamental limitative theo-
rems a fact of mathematical life. Still, like artists, mathematicians regroup, consider
their progress, and move on, exploring new directions and new possibilities.

Artists remind us of another limit—our own. Whatever medium is chosen, and
whatever forms are imposed, expressions of our collective human understanding never
feel finally, satisfyingly, complete. Pynchon writes metaphorically of Mason and
Dixon and their army of axe-wielding Colonials plowing through the mysteries of the
American wilderness at precisely 39◦ 43′ N [7]. Like Pollock’s blue poles, the meager
structures that we force upon a world that is so vastly different from ourselves may
seem laughable. It would seem that way, at least, if those structures weren’t such a
fundamental part of who we are.

Peterson quotes the geometer H. S. M. Coxeter, saying of visualizations in chaos
theory that “It makes it almost embarrassing for abstract artists to do abstract art be-
cause these are things that are so varied and so beautiful that one doesn’t need to
go any further” (p. 133). This is chutzpah, on a cosmological scale. There is always
further—infinitely further. Artists and mathematicians know this in their bones. To-
gether they survey the universe, extending away from them in myriad dimensions, and
from within the tiny perimeter that they are able to carve out, they express what they
can see, and what others may see. It is this shared sense of place and purpose, perhaps,
that connects artists and mathematicians most fundamentally.
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Mathematical Models in Population Biology and Epidemiology. By Fred Brauer and Carlso
Castillo-Chávez. Springer, New York, 2001, xxiii + 416 pp., ISBN 0-387-98902-1, $59.95.

Reviewed by Shandelle M. Henson

Recently I stood with mathematician Jim Cushing and ecologist Bob Costantino in the
cool dimness of the Mt. Wilson Observatory, looking across the railing into the tele-
scope room. After a period of silence, Bob turned to us and said, “Astronomers looked
up at the sky and assumed there was order. So they formulated and tested mathematical
models. Ecologists look out at nature and say, ‘This stuff is too complex to explain and
predict.’ That’s self-defeating. Surely there is enough low-dimensional order out there
to allow prediction of ecological dynamics. When the mindset changes—as it surely
will—scientific progress will follow.”

As I consider recent advances in ecology, I have the growing sense that these words
may be prophetic. Ecology may well stand at the threshold of an enormously produc-
tive mathematical revolution.

For those unfamiliar with the issues, some explanation is in order. Mathematics
and ecology have had an uneasy relationship. It is true that each discipline has ben-
efited from the other. On the one hand, the models and questions of ecology have
contributed substantial motivation to the mathematical theory of dynamical systems.
On the other hand, mathematics has contributed a number of important theoretical
insights and tenets to ecology. However, actual quantitative connections between dy-
namic models and data have been scarce. While the discipline of physics has long em-
braced mathematical models and controlled laboratory experiments as primary tools
for the explanation and prediction of dynamic physical phenomena, ecology has been
slow to follow.

In fact, the hypothesis that population fluctuations are shaped largely by low-
dimensional deterministic forces has caused considerable controversy for nearly a
century. During the last few decades, however, this hypothesis has been rigorously
and successfully tested in laboratory populations through the application of dynam-
ical systems theory and statistics. Careful studies involving mathematical models,
controlled laboratory population experiments, and statistical techniques have unequiv-

254 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 110



Integre Technical Publishing Co., Inc. American Mathematical Monthly 110:3 November 11, 2002 10:55 a.m. reviews.tex page 255

ocally identified many low-dimensional deterministic phenomena in population data.
These phenomena include equilibria, cycles, transitions between dynamic regimes
(bifurcations), multiple attractors, resonance, basins of attraction, saddle influences,
stable and unstable manifolds, transient phenomena, and even chaos. Robust qualita-
tive and quantitative predictions have become possible for several laboratory systems;
see [1]–[5], [8], and [10]–[12].

A major goal of laboratory studies, of course, is to gain clear insights that might be
applied to fluctuations in field populations. Despite the very real difficulties of devel-
oping quantitatively accurate models for field systems, many researchers are optimistic
that we are gaining the necessary conceptual tools and insights. If some of the recent
successes in the laboratory can be extended to the field, unprecedented advances in
field ecology may lie just around the corner.

So what does this have to do with textbooks for mathematical modeling? In this
exciting climate of accelerating change, students of biology in general and ecology
in particular should be trained in the mathematical methods just as physics majors
are. Interdisciplinary courses on mathematical models in biology are springing up at
many university campuses. These classes are important to the future of the discipline
of ecology. Not all the students thus trained will go on to do mathematical modeling in
their careers; but hopefully they will have lost any prejudice they might have harbored
against the method of abstraction and will point their own students to the importance
of mathematical training. In other words, classes in mathematical modeling can help
change the academic culture of biology and ecology departments.

I have had the pleasure of teaching such courses at the College of William and Mary
and Andrews University. The subject seems to be popular, and it has attracted some
excellent students. We cover the basics of deterministic discrete- and continuous-time
linear and nonlinear models, both scalar equations and systems. Topics include ana-
lytic solutions of linear equations, equilibria, linearization, stability, phase portraits,
bifurcations, simulations, and modeling methodology. We spend a good deal of time
discussing the philosophy of science: how are mathematics and science different, how
are they similar, and how should mathematics be used in science? We talk about logic,
epistemology, and various notions of certainty. The students become familiar with
the literature, work together in interdisciplinary research groups, and learn to give
research talks. It would be nice to run a second semester of the course, covering issues
of stochasticity, parametrization, validation, and the connection of models with data.
Teaching this course has been fun and rewarding.

It has also been a challenge. Frankly, teaching a good interdisciplinary course in
mathematics and biology can be tough. It seems to me that the ideal classroom is a
mix of biology and mathematics majors. Each discipline learns to respect the other; the
mathematics students learn some biology and the biology students some mathematics;
and all of them get a taste of the exciting synergy of interdisciplinary collaboration.
At any rate, even if one did wish to separate the biology and mathematics students,
many universities do not have the resources to run two such courses. The problem
with having a mixed clientele, of course, is pitching the material at the right level of
mathematical difficulty. Usually the biology majors will have had one or two semesters
of calculus. Mathematics majors who are drawn to such a course, in contrast, tend to
be more advanced in their mathematical curriculum; they are often seniors looking for
an interesting mathematics elective.

Although the inequalities of mathematical background present a real opportunity for
an intellectually invigorating classroom, they can also create various sorts of problems.
Feelings of insecurity and attitudes of disdain among the students are not uncommon.
The biology students who take such a course are usually pretty serious and sometimes
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even intellectually passionate; but they often feel insecure about the mathematics. And,
it is pretty common for one or two lazy or anti-intellectual mathematics majors to
enroll just because it sounds like an easy elective. These students sometimes attempt
to cloak a refusal to learn with a mantle of mathematicians’ disdain. (This is easy to
see through, but it certainly is annoying.) It is often unclear how fast the instructor
should go through the material, and to what depth; and each group of students may
have different needs in this regard.

How should a mathematics professor deal with such problems? I have tried vari-
ous methods. Most importantly, one must create an atmosphere of interprofessional
respect. It helps if the professor has credibility as an interdisciplinary researcher and
collaborates with colleagues from biology. It is also helpful if biologist colleagues sit
in on the course, or team teach it, or give guest lectures. I try to cover the biology as
well as the mathematics and to present the modeling techniques in a unified scientific
framework. Along with respect, it is important to create an atmosphere of security. Bi-
ology students must be certain that it is okay to ask questions about the mathematics,
that there is no reason to be ashamed because they don’t know as much math as the
mathematics majors. They need to be encouraged to jump in with both feet, simply
learn as much as they can, and be intellectually passionate as scientists. The math-
ematics majors should be encouraged to learn some science, and to dig deeply into
some of the fascinating and difficult mathematical topics (such as chaos) that come up
in biology.

Traditional lecturing—normally my most effective teaching mode—must proceed
at a more leisurely pace, and can be punctuated by frequent “breaks.” Students come
up to the board to work problems, we discuss issues of human population growth, I
probe the students’ understanding of various issues by calling on them individually.
Sometimes when going through a long algebraic derivation, I will ask each student in
turn: “Clara, what is the next step in solving for λ?” “Matt, what does the eigenvalue
tell you about the dynamical system?” When one has a good feel for the level of
each student, one can usually ask questions to which he or she can give appropriate
and substantive answers. These frequent changes of pace keep the attention of those
with more mathematical background and help those with less to absorb the material.
Because of the dampening effect of lazy students who are not really interested in the
subject, I have started personally interviewing students before they begin the class. I
tell each student what the class will be like and what I expect in terms of participation
and intellectual engagement. I also warn that the nontraditional nature of the class
might make it a miserable experience for someone who is not excited about biology.

Finally, there is the problem of choosing an appropriate textbook. At first I imag-
ined I would simply choose a textbook and follow it, as we tend to do in mathematics.
Edelstein-Keshet [6], perhaps the main workhorse in the area, nicely integrates the
mathematics with the applications and brings together a treasure-trove of material. It
has a prerequisite of “basic calculus,” but it was too difficult for my students who had
done well in a year of calculus at William and Mary. Hastings [9] requires a year of
calculus and suggests having some previous exposure to ecological ideas. This well-
written book was created for Hastings’s population ecology students, and it is a favorite
with my biology majors. It is too elementary in terms of computation and theory for
mathematics majors, although it provides excellent supplemental reading for these stu-
dents.

The book under review is a new entry in this field. Fred Brauer and Carlos Castillo-
Chávez have written a solid, comprehensive book organized around the three topics of
single species models, interacting species models, and structured population models.
They cover discrete and continuous time equations, linear models and linearization,
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qualitative analysis and phase space, bifurcations, and delay equations. Biological ap-
plications and classic topics include epidemiology, vaccination schemes, harvesting,
delayed recruitment, Lotka-Voterra models, chemostats, competition, predator-prey
systems, mutualism, Kolmogorov models, invasion and coexistence, the community
matrix, and age structured McKendrick-Von Foerster models (including numerical
schemes). Some chapters include case studies of such topics as the eutrophication of
a lake, oscillations in flour beetle populations, Nicholson’s blowflies, and the spruce
budworm. Most chapters contain several interesting projects; for example, estimating
the population of the U.S.A. and models for blood cell populations, neurons, and pulse
vaccination.

The book reads as a well-written and fairly traditional undergraduate mathematics
textbook, with theorems and some proofs (although many theorems are stated with-
out proof). Its prerequisites are “a year of calculus, some background in elementary
differential equations, and a little matrix theory.” It would work well as a text for
an upper division undergraduate topics course in applied dynamics, or as a graduate
course for mathematically advanced ecology students. It served as an excellent refer-
ence and source for problems and projects in my own undergraduate interdisciplinary
class. However, my students found it more difficult than Edelstein-Keshet [6].

The conclusion of the textbook hunt for my particular situation has been the follow-
ing: (1) the kind of course I want to teach is too fluid to run in lockstep with a textbook;
(2) no book will be at the right level for all the students in my class; indeed, there is no
“right level”; (3) textbooks are useful for assigning readings and problems, as sources
for student projects, and as reference books for the scholarly libraries of my upcoming
young research biologists and applied mathematicians. In the Spring 2002 semester I
used two texts: the book under review and Hastings [9]. I assigned readings and home-
work problems out of both books as appropriate, but did not base my lectures on either
book. Instead, I ended up writing my own set of notes tailored to the interdisciplinary
mix of students. This approach seemed to work well.

Brauer and Castillo-Chávez write in the preface: “This book is intended to inspire
students in the biological sciences to incorporate mathematics in their approach to sci-
ence . . . . A secondary goal is to expose students of mathematics to the process of mod-
eling in the natural and social sciences.” This statement cheers me, and I am reminded
of the words of the evolutionary statistician R. A. Fisher [7, p. ix], when he said of
mathematics and biology: “I can imagine no more beneficial change in scientific ed-
ucation than that which would allow each to appreciate something of the imaginative
grandeur of the realms of thought explored by the other.”

ACKNOWLEDGMENT. Thanks to my colleagues of the interdisciplinary Beetle Team: R. F. Costantino, J.
M. Cushing, B. Dennis, and R. A. Desharnais. Thanks also to my collaborator, ecologist J. L. Hayward, who
helped me teach the mathematical modeling class this year.

REFERENCES

1. O. N. Bjørnstad and B. T. Grenfell, Noisy clockwork: time series analysis of population fluctuations in
animals, Science 293 (2001) 638–643.

2. O. N. Bjørnstad, S. M. Sait, N. C. Stenseth, D. J. Thompson, and M. Begon, Coupling and the impact of
specialised enemies on the dimensionality of prey dynamics, Nature 401 (2001) 1001–1006.

3. R. F. Costantino, J. M. Cushing, B. Dennis, and R. A. Desharnais, Experimentally induced transitions in
the dynamic behavior of insect populations, Nature 375 (1995) 227–230.

4. R. F. Costantino, R. A. Desharnais, J. M. Cushing, and B. Dennis, Chaotic dynamics in an insect popula-
tion, Science 275 (1997) 389–391.

5. B. Dennis, R. A. Desharnais, J. M. Cushing, S. M. Henson, and R. F. Costantino, 2001. Estimating chaos
and complex dynamics in an insect population, Ecological Monographs 71 (2001) 277–303.

March 2003] REVIEWS 257



Integre Technical Publishing Co., Inc. American Mathematical Monthly 110:3 November 11, 2002 10:55 a.m. reviews.tex page 258

6. L. Edelstein-Keshet, Mathematical Models in Biology, McGraw-Hill, Boston, 1988.
7. R. A. Fisher, The Genetical Theory of Natural Selection, Oxford University Press, Oxford, 1930.
8. G. F. Fussmann, S. P. Ellner, K. W. Shertzer, and N. G. Hairston, Crossing the Hopf bifurcation in a live

predator-prey system, Science 290 (2000) 1358–1360.
9. A. Hastings, Population Biology: Concepts and Models. Springer-Verlag, New York, 1997.

10. S. M. Henson, R. F. Costantino, J. M. Cushing, R. A. Desharnais, B. Dennis, and A. A. King, Lattice
effects observed in chaotic dynamics of experimental populations, Science 294 (2001) 602–605.

11. E. McCauley, R. M. Nisbet, W. W. Murdoch, A. M. DeRoos, and W. S. C. Gurney, Large amplitude
cycles of Daphnia and its algal prey in enriched environments, Nature 402 (1999) 653–656.

12. W. A. Nelson, E. McCauley, and F. J. Wrona, Multiple dynamics in a single predator-prey system: effects
of food quality, Proceedings of the Royal Society of London, Series B 268 (2001) 1223–1230.

Andrews University, Berrien Springs, MI 49104
henson@andrews.edu

258 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 110


